4,316 research outputs found

    Electronic structure of charge-ordered Fe3O4 from calculated optical, megneto-optical Kerr effect, and O K-edge x-ray absorption spectra

    Full text link
    The electronic structure of the low-temperature (LT) monoclinic magnetite, Fe3O4, is investigated using the local spin density approximation (LSDA) and the LSDA+U method. The self-consistent charge ordered LSDA+U solution has a pronounced [001] charge density wave character. In addition, a minor [00{1/2}] modulation in the phase of the charge order (CO) also occurs. While the existence of CO is evidenced by the large difference between the occupancies of the minority spin t_{2g} states of ``2+'' and ``3+'' Fe_B cations, the total 3d charge disproportion is small, in accord with the valence-bond-sum analysis of structural data. Weak Fe orbital moments of ~0.07 mB are obtained from relativistic calculations for the CO phase which is in good agreement with recent x-ray magnetic circular dichroism measurements. Optical, magneto-optical Kerr effect, and O K-edge x-ray absorption spectra calculated for the charge ordered LSDA+U solution are compared to corresponding LSDA spectra and to available experimental data. Reasonably good agreement between the theoretical and experimental spectra supports the relevance of the CO solution obtained for the monoclinic LT phase. The results of calculations of effective exchange coupling constants between Fe spin magnetic moments are also presented.Comment: 32 pages, 10 figure

    String Nature of Confinement in (Non-)Abelian Gauge Theories

    Get PDF
    Recent progress achieved in the solution of the problem of confinement in various (non-)Abelian gauge theories by virtue of a derivation of their string representation is reviewed. The theories under study include QCD within the so-called Method of Field Correlators, QCD-inspired Abelian-projected theories, and compact QED in three and four space-time dimensions. Various nonperturbative properties of the vacua of the above mentioned theories are discussed. The relevance of the Method of Field Correlators to the study of confinement in Abelian models, allowing for an analytical description of this phenomenon, is illustrated by an evaluation of field correlators in these models.Comment: 100 pages, LaTeX2e, no figures, 1 table, based on the Ph.D. thesises at the Humboldt University of Berlin (1999) (available under http://dochost.rz.hu-berlin.de) and the Institute of Theoretical and Experimental Physics, Moscow (2000), new results are included, extended with respect to the journal versio

    Charge order in Fe2OBO3: An LSDA+U study

    Get PDF
    Charge ordering in the low-temperature monoclinic structure of iron oxoborate (Fe2OBO3) is investigated using the local spin density approximation (LSDA)+U method. While the difference between t_{2g} minority occupancies of Fe^{2+} and Fe^{3+} cations is large and gives direct evidence for charge ordering, the static "screening" is so effective that the total 3d charge separation is rather small. The occupied Fe^{2+} and Fe^{3+} cations are ordered alternately within the chain which is infinite along the a-direction. The charge order obtained by LSDA+U is consistent with observed enlargement of the \beta angle. An analysis of the exchange interaction parameters demonstrates the predominance of the interribbon exchange interactions which determine the whole L-type ferrimagnetic spin structure.Comment: 7 pages, 8 figure

    Hydrogen on graphene: Electronic structure, total energy, structural distortions, and magnetism from first-principles calculations

    Get PDF
    Density functional calculations of electronic structure, total energy, structural distortions, and magnetism for hydrogenated single-layer, bilayer, and multi-layer graphene are performed. It is found that hydrogen-induced magnetism can survives only at very low concentrations of hydrogen (single-atom regime) whereas hydrogen pairs with optimized structure are usually nonmagnetic. Chemisorption energy as a function of hydrogen concentration is calculated, as well as energy barriers for hydrogen binding and release. The results confirm that graphene can be perspective material for hydrogen storage. Difference between hydrogenation of graphene, nanotubes, and bulk graphite is discussed.Comment: 8 pages 8 figures (accepted to Phys. Rev. B

    Manifestation of anisotropy persistence in the hierarchies of MHD scaling exponents

    Full text link
    The first example of a turbulent system where the failure of the hypothesis of small-scale isotropy restoration is detectable both in the `flattening' of the inertial-range scaling exponent hierarchy, and in the behavior of odd-order dimensionless ratios, e.g., skewness and hyperskewness, is presented. Specifically, within the kinematic approximation in magnetohydrodynamical turbulence, we show that for compressible flows, the isotropic contribution to the scaling of magnetic correlation functions and the first anisotropic ones may become practically indistinguishable. Moreover, skewness factor now diverges as the P\'eclet number goes to infinity, a further indication of small-scale anisotropy.Comment: 4 pages Latex, 1 figur

    Charge order and spin-singlet pairs formation in Ti4O7

    Full text link
    Charge ordering in the low-temperature triclinic structure of titanium oxide (Ti4O7) is investigated using the local density approximation (LDA)+U method. Although the total 3d charge separation is rather small, an orbital order parameter defined as the difference between t2g occupancies of Ti3+^{3+} and Ti4+^{4+} cations is large and gives direct evidence for charge ordering. Ti 4s and 4p states make a large contribution to the static "screening" of the total 3d charge difference. This effective charge screening leads to complete loss of the disproportionation between the charges at 3+ and 4+ Ti sites. The occupied t2g states of Ti3+^{3+} cations are predominantly of dxyd_{xy} character and form a spin-singlet molecular orbital via strong direct antiferromagnetic exchange coupling between neighboring Ti(1) and Ti(3) sites, whereas the role of superexchange is found to be negligible.Comment: 6 pages, 4 figure

    Effect of angular momentum distribution on gravitational loss-cone instability in stellar clusters around massive BH

    Full text link
    Small perturbations in spherical and thin disk stellar clusters surrounding massive a black hole are studied. Due to the black hole, stars with sufficiently low angular momentum escape from the system through the loss cone. We show that stability properties of spherical clusters crucially depend on whether the distribution of stars is monotonic or non-monotonic in angular momentum. It turns out that only non-monotonic distributions can be unstable. At the same time the instability in disk clusters is possible for both types of distributions.Comment: 14 pages, 7 figures, submitted to MNRA

    Sensitivity of depth of maximum and absorption depth of EAS to hadron production mechanism

    Get PDF
    Comparison of experimental data on depth of extensive air showers (EAS) development maximum in the atmosphere, T sub M and path of absorption, lambda, in the lower atmosphere of EAS with fixed particle number in the energy region eV with the results of calculation show that these parameters are sensitive mainly to the inelastic interaction cross section and scaling violation in the fragmentation and pionization region. The data are explained in a unified manner within the framework of a model in which scaling is violated slightly in the fragmentation region and strongly in the pionization region at primary cosmic rays composition close to the normal one and a permanent increase of inelastic interaction cross section. It is shown that, while interpreting the experimental data, disregard of two methodical points causes a systematic shift in T sub M: (1) shower selection system; and (2) EAS electron lateral distribution when performing the calculations on basis of which the transfer is made from the Cerenkov pulse FWHM to the depth of shower maximum, T sub M
    corecore